First Searches for Single Top Quark Production with ATLAS

Dominique Tardif
[University of Toronto]
for the ATLAS collaboration

DIS2011 @ JLab April 14, 2011

Single Top at the LHC

Three production modes with different rates and phenomenologies:

- t-channel ($\sigma = 66 \text{ pb}$)
 - Largest production rate
 - Charge asymmetric at the LHC
 - Final state: 1 lepton + 2 jets (1 b, 1 light) + E_T^{miss}
 - Backgrounds: Top pairs, W/Z+jets, WW, WZ, ZZ, multijets
- Wt-channel ($\sigma = 15 \text{ pb}$)
 - Now accessible at the LHC
 - \circ Lepton+jets: 1 lepton + 3 jets (1 b, 2 light) + E_{T}^{miss}
 - Backgrounds: Top pairs, W/Z+jets, WW, WZ, ZZ, multijets
 - Dilepton: 2 leptons + 1 b-jet + E_T^{miss}
 - Backgrounds: Top pairs, Z+jets, WW, WZ, ZZ
- s-channel ($\sigma = 4 \text{ pb}$)
 - Small production rate at the LHC
 - o Impossible with current amount of data

Single Top Program at ATLAS

- First priority: work toward (re-)discovery, with focus on understanding backgrounds ← TODAY
 - Use 7 TeV LHC (pp) data collected June-October 2010, total integrated luminosity = 35 pb⁻¹
 - Search for t-channel single top quark production
 - Cut-based analysis
 - Likelihood analysis
 - Search for Wt-channel single top quark production
 - Lepton+jets final states
 - Dilepton final states
 - o Reference: <u>ATLAS-CONF-2011-027</u>
- Long-term:
 - Precisely measure the cross-sections for all three processes
 - Constrain BSM models (4th gen., W', charged Higgs, FCNC)

Lepton+jets Preselection / BG

- Require:
 - \circ 1 isolated electron or muon with $E_{\tau}(p_{\tau}) > 20$ GeV
 - \circ 2, 3, or 4 jets with p_T>25 GeV, exactly one b-tagged
 - Use sec. vertex tagging algorithm, eff=50%, light rej~270
 - \circ E_T^{miss} > 25 GeV
 - \circ M_T > 60 GeV E_T^{miss} (multijet veto)
- Main backgrounds are determined from data
 - Multijets:
 - Binned likelihood fit of E_T^{miss} distribution
 - Matrix method
 - o W+jets:
 - Overall normalization from pretag
 - Composition from pretag/tag constraints
- Other backgrounds (top pair, Z+jets, WW, WZ, ZZ) from MC

t-channel Analyses ~ Cut-based

Require exactly **2** jets, $|\eta(ujet)| > 2.5$, $130 < m_{top} < 210$ GeV:

Cut-based	Lepton +	Lepton -	
t-channel	10.3 ± 1.8	4.4 ± 0.8	
Total expected	22.7 ± 3.8	13.2 ± 2.8	
Data	21	11	
S/B	0.83	0.50	

t-channel Analyses ~ Likelihood

Build a 5-variable likelihood:

Likelihood	Lepton +	Lepton -	
t-channel	8.0 ± 1.8	3.4 ± 0.8	
Total expected	15.4 ± 3.0	8.8 ± 2.0	
Data	16	11	
S/B	1.08	0.62	

t-channel Results

- Combine e+µ, then separate into +/- charge samples to improve sensitivity
- Performance of the cut-based and likelihood analyses is very similar, use cut-based as baseline
- t-channel
 W+t prod.
 s-channel
 top pairs
 W + heavy flavor
 W + jets
 Dibosons
 Z + jets
 Multijets
 Data
- Cross-section/limit extraction based on profile likelihood ratio
- Find $\sigma_t = 53^{+27}_{-24} (stat)^{+38}_{-27} (syst) pb [1.6\sigma obs 1.9\sigma exp]$
 - \circ Translates to $\sigma_{\scriptscriptstyle t}$ < 182 pb @ 95% CL
 - Dominant uncertainties: jet energy scale, b-tagging, W+jets normalization

Wt-channel Lepton+jets Analysis

- Same preselection as t-channel analysis
- Additionally require:
 - ∘ 2-4 central ($|\eta|$ <2.5) jets, one b-tagged with p₊>35 GeV
 - $\circ \Delta R(j_1, j_2) < 2.5$
- Background composition varies greatly between different jet multiplicity bins
 - Customized selections will bring large improvement

Muon	2 jets	3 jets	4 jets	
Wt-channel	2.4 ± 0.5	2.8 ± 0.4	1.2 ± 0.2	
Total expected	66.2 ± 14.6	50.5 ± 8.2	32.6 ± 4.4	
Data	74	50	37	
S/B	0.04	0.06	0.04	

Wt-channel Dilepton Selection/BG

• Require:

- 2 isolated, opp. charge electrons or muons (ee/eμ/μμ)
- Exactly 1 jet with p_T>20 GeV
- $\circ |M_{II}-M_{Z}|>10 \text{ GeV and } E_{T}^{\text{miss}}>50 \text{ GeV}$ (ee/ $\mu\mu$)
- $\circ H_{T}(I_{1},I_{2},j_{1},E_{T}^{miss}) > 160 \text{ GeV } (e\mu)$
- Backgrounds from data and MC
 - Fakes (W+jets, multijet): 4x4 Matrix method
 - Drell-Yan: control + validation samples
 - Top pair (main BG): normalized in control sample
 - \circ Z $\rightarrow \tau\tau$, WW, WZ, ZZ: MC predictions

Wt-channel Dilepton Analysis

	eμ	ee	μμ
Wt-channel	1.7 ± 0.5	0.3 ± 0.1	0.8 ± 0.2
Total expected	9.2 ± 2.4	1.8 ± 0.6	4.5 ± 1.2
Data	12	1	2
S/B	0.23	0.20	0.22

Combined Wt-channel Result

Total of **9** orthogonal final states ($e/\mu+2/3/4$ jets, $ee/e\mu/\mu\mu+1$ jet)

 Set limits using profile likelihood ratio:

95% CL Upper Limit	Expected	Observed
Lepton+jets	123 pb	198 pb
Dilepton	112 pb	110 pb
Combined	94 pb	158 pb

- \bullet Expected (observed) limit on σ_{Wt} corresponds to 6.3 (10.5) times the SM expectation
- Dominant sources of uncertainty
 - Lepton+jets: jet energy scale, b-tagging
 - Dilepton: jet energy scale, initial/final state radiation modeling
 - Signal statistics also quite important for both analyses

Summary And Outlook

- First searches for electroweak single top quark production in LHC collision data (L = 35 pb⁻¹) with ATLAS
- t-channel searches use 2-jet events with 1 b-tagged jet
 - Simple cut-based approach (m_{top}, |η(untagged jet)|)
 - 5-variable likelihood used as cross-check
 - \circ Result significance is 1.6 σ , compatible with SM
- First limit on the Wt-channel process
 - Lepton+jets analysis using events with 2-4 central jets
 - Dilepton analysis using 1-jet events
 - Observed (expected) limit is 10.5 (6.3) x SM cross-section
- Expect large improvements on both results with more data
 - LHC and ATLAS already back in running mode
 - Can explore more complex analysis techniques

~ BACKUP ~

Fake Background: Fitting method

- Perform a binned likelihood fit to the observed E_T^{miss} distribution
- Templates for 'real' lepton events are taken from MC
- 'Fake' lepton template obtained by replacing lepton requirement with a 'lepton-like jet' requirement

Fake Background: Matrix method

- Define two selection levels (Loose/Tight) for leptons
- Measure ${\bf r}$ and ${\bf f}=N_{tight}/N_{loose}$ in control regions enriched with ${\bf r}$ eal and ${\bf f}$ ake leptons
 - Real: Events with 1 loose + 1 tight w/ M_{II} near Z mass
 - Fake: Events with 1 loose, low E_T^{miss}
- Extract full sample composition by inverting a system of equations
 - O Lepton+jets: $N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$ $N^{tight} = N^{tight}_{real} + N^{tight}_{fake} = \epsilon_{real} N^{loose}_{real} + \epsilon_{fake} N^{loose}_{fake}$

O Dilepton:
$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

W+jets Background Estimation

 Normalization in pretag sample obtained by event counting for each jet multiplicity

$$\circ$$
 i.e. $N_W = N_{Data} - N_{QCD} - N_{MC}$

- Flavor composition obtained by tag counting
 - 3 unknowns: f_{light}, f_c, f_b
 - 3 control samples: 1-jet pretag, 1-jet tag, 2-jet pretag
- Results are combined into a single scale factor for each flavor/jet multiplicity

K factor	K_{bb}	$K_{ m light}$	K_c
W + 1jet	$0.71\pm0.10(stat)\pm0.62(sys)$	$0.99\pm0.01(stat)\pm0.18(sys)$	$1.56\pm0.16(stat)\pm0.72(sys)$
W + 2jet	$0.68\pm0.09(stat)\pm0.64(sys)$	$0.95\pm0.02(stat)\pm0.25(sys)$	$1.50\pm0.16(stat)\pm0.66(sys)$
W + 3jet	$0.65\pm0.09(stat)\pm0.65(sys)$	$0.91\pm0.02(stat)\pm0.34(sys)$	$1.43\pm0.16(stat)\pm0.65(sys)$
W + 4jet	$0.65\pm0.09(stat)\pm0.76(sys)$	$0.90\pm0.04(stat)\pm0.53(sys)$	$1.43\pm0.17(stat)\pm0.78(sys)$

t-channel Variables

Wt-channel I+j Electron Results

Electron	2 jets	3 jets	4 jets
Wt-channel	2.3 ± 0.5	2.7 ± 0.4	1.2 ± 0.2
Total expected	56.3 ± 12.9	40.0 ± 6.5	29.0 ± 3.5
Data	49	55	29
S/B	0.04	0.07	0.04

